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A more efficient variant of PRESENT.
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The Attack

Our Contribution

In this talk we explain how to break Maya with a complexity of
~ 297,

Technique: Differential attack with a twist.

Use good differentials without knowing them.
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The Attack

Differential Attack on Maya

@ We cannot specify characteristics
@ Thus: no characteristic to be followed

X||r A? A?
oy il Kl

r
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Differential Attack on Maya

The Attack

@ We cannot specify characteristics

@ Thus: no characteristic to be followed

(x1[r) A? A?
— EK EK EK
(vllr) ‘ ? ’
Use relative information:
(x[r) Aa A?
(vllr) ‘ ? ’
(x'l|r) Ad/ A?
E, E, E,
win] " e '

Ex

r

— Af}/

Informally: Compare distribution of Ay and A~': Learn
something about A« and/or Acd/'.
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We focus on the leftmost Sbox in the first round. Other Sboxes

similar.

Left Most Sbox




The Attack

The basic idea to recover the Sboxes

@ Fix two inputs x # y € F3 to the leftmost Sbox S.
@ Estimate the probability of

(x @ ¥)]|0% —7([0%

using counters for each pair (x, y).
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The Attack

The basic idea in a picture

l Ii l

l i ] @ Fixx,y

000000000000O0O0 O @ Encryptpair
(x|ri, ¥Iri),
0<i<N.

@ Count how often
only first Sbox
active in the output

some more rounds

?7000000000000000O0 =
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The Attack

First Assumption

The smaller the hamming weight of S(x) & S(y) is, the higher
the counter.

The highest counters correspond to one bit differences
S(x) @ S(y). This will tell us something about the Sbox.
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The Attack

First Assumption in a Picture

@ x,y with one bit
output difference

W(S(x)+S(y)) = 1

@ One active Sboxes
in the second
round

some more rounds

1111 11111 11
?7000000000000000O0
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The Attack

First Assumption in a Picture

@ x,y with two bit
output difference

Wi(S(x)+S(y)) = 2

@ Two active Sboxes
in the second
round

some more rounds

1111 11111 11
?7000000000000000O0
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The Attack

A bit more precise

@ Encrypt structures «||r; , = runs through all 4 bit values and
r; € F$0 is random and fixed. 0 < i < Ns.

@ For each pair {x, y} with x # y € F4 we have a counter

C({x,y}) = t{ri |Enc(x||r) & Enc(y|lr}) =?/|0°}

The highest counters C({x, y}) correspond to x, y such that
wt(S(x) & S(y)) = 1.

For the rest: Examples only!
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The Attack

Example

C({x.y}) = #{r; |Enc(x||r) & Enc(yl|r;) =7||0%}

(sorted and only the 24 highest values out of 120)

C(x,y) || 273 | 265 | 264 | 263 | 261 | 261 | 253 | 243
{x. b | (09) ] (7,2) | (da) ]| (65) | (3,1) | (f8) | (e,4) | (c,0)
C(x,y) | 163 | 157 | 139 | 136 | 119 | 114 | 102 | 95
{x.y} || (a6) | (84) | (2,0) | (9,1) | (f,e) | (d,5) | (¢7) | (b,3)
Clx,y) | 11 8 8 7 6 6 5 5
{x.y} ] (80) ] (83) | (f4) | (&,7) | (42) | (52) | (6,1) | (a,9)
Do the highest counters C({x, y}) correspond to x, y such that
wt(S(x) @ S(y)) =17
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The Attack

Example for the counters

C(x,y) 273 | 265 | 264 | 263 | 261 | 261 | 253 | 243

{x,y} | (9 (72 |(d,a) | (65) | 31| (£8) | (e4) | (c,0)
Wi(S(x) & S(¥)) 1 1 1 1 1 1 1 1

C(x,y) 163 | 157 | 139 | 136 | 119 | 114 | 102 95

{x,y} | (a6) | (8,4) | (2,0) | (9,1) | (fe) | (d,5) | (c,7) | (b,3)
WH(S(x) @ S(y)) 1 1 1 1 1

C(x,y) 11 8 8 7 6 6 5 5

{x,y} | (80) | (83) | (14) | (e)7) | (42) | (5:2) | (6,1) | (a9)
Wi(S(x) @ S()) 2 2 1 3 2 1 2 2
The assumption is fulfilled! But there is more...
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The Attack

Probabilities of Differentials

The probability of a (truncated) differential depends on the
(second round) input difference.

Implication for the counters C({x, y}): High counters should
correspond to the same output difference.
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The Attack

Example for the counters

C(x,y) 273 | 265 | 264 | 263 | 261 261 253 | 243
{x,y} |9 (72 |(da) | (65) | 31| (£8) | (e4) | (c,0)
Wi(S(x) @ S(y)) 1 1 1 1 1 1 1 1
S(x) @ S(y) 4 4 4 4 4 4 4 4
C(x,y) 163 | 157 | 139 | 136 | 119 | 114 | 102 95
{x,y} || (a,6)] (84) | (2,0) | (9,1) | (fte) | (d,5) | (c,7) | (b3)
wi(S(x) ® S(¥)) 1 1 1 1 1 1 1 1
S(x) @ S(y) 2 2 2 2 2 2 2 2
C(x,y) 11 8 8 7 6 6 5 5
{x,y} | (80) | (83) | (14) |(e7) | (42) | (52) | (6,1) | (a9)
Wi(S(x) ® S()) 2 2 1 3 2 1 2 2
S(x) @ S(y) 5 6 8 7 5 8 5 5
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The Attack

Example for the counters

C(x,y) 273 | 265 | 264 | 263 | 261 | 261 | 253 | 243

Xy} (b,9) | (7,2) | (d,a) | (6,5) | (38,1) | (1,8) | (e,4) | (c,0)
Wi(S(x) @ S(y)) 1 1 1 1 1 1 1 1

5(x) @ S(y) 4 4 4 4 4 4 4 4

@ The highest 8 counters correspond to 8 pairs with the
same output difference.

@ There are exactly 8 such pairs, so we learn them all.

@ We do not know the exact difference.
@ But we assume it is of hamming weight one.
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The Attack

Recovering the Sbox

That is a lot(?) of information about the Sbox!

We learn up to 4 sets

De = {{x,y} | S(x) & S(y) = e}

@ Still too many possibilities!
@ Learning all 4 sets is difficult.
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The Attack

Attack the Inverse

We learn up to 4 sets

De = {{x,y} | S(x) ® S(y) = e}

Even better
We can do the attack upside down!

We learn up to 4 sets

Er={{x.y} 18 e S (y)=1}

Experimental Fact

Given two sets D, and one set E;: Often only one possible
Sbox.
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The Attack

Some Improvements

Improvements over the basic idea:

@ Relaxed truncated differentials

@ Detect errors, i.e. discard wrong sets
Details in the paper

Those make the difference between a practical and a
theoretical attack.
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Complexity of the Attack

Outline

Q Complexity of the Attack
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Complexity of the Attack

Experimental Complexity of the Attack
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Complexity of the Attack

Conclusions

@ Practical attack on Maya

@ Applies to a broader class

@ Up to 28 rounds: not secure

@ Technique: Twist on truncated differentials

@ Mathematical model of the complexity in the paper
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Complexity of the Attack

The End

Thanks a lot!
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